FAILURE MODES EFFECTS ANALYSIS (FMEA) -- NON-CIL HARDWARE NUMBER: M5-688-0116 -X

SUBSYSTEM NAME: ISS DOCKING SYSTEM

REVISION: 0

02/27/98

PART DATA

PART NAME

VENDOR NAME

PART NUMBER

VENDOR NUMBER

LRU :PANEL A6A3

V828-730150

SRU

:CIRCUIT BREAKER

MC454-0026-2075

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS:

CIRCUIT BREAKERS, 7.5 AMP - DOCKING SYSTEM POWER (MAIN A, MAIN B, MAIN C)

REFERENCE DESIGNATORS:

36V73A7A3CB11

36V73A7A3CB12 35V73A7A3CB13 36V73A7A3CB14 36V73A7A3CB15 36V73A7A3CB16

QUANTITY OF LIKE ITEMS: 6

SIX

FUNCTION:

PROVIDE OVERLOAD PROTECTION TO THE ORBITER MAIN A (MPCA-1) MAIN B (MPCA-2.) AND MAIN C (MPCA-3) FROM THE PANEL LOGIC BUS A, B, AND C CIRCUITS.

REFERENCE DOCUMENTS:

1) VS70-953103, INTEGRATED SCHEMATIC - 53A, MAIN AMAIN B SYSTEM POWER AND APDS LOGIC BUSES

PAGE 5 PRINT DATE: 04/11/98

FAILURE MODES EFFECTS ANALYSIS FMEA - NON-CIL FAILURE MODE

NUMBER: M5-65S-0116-02

REVISION#: 0

SUBSYSTEM NAME: ISS DOCKING SYSTEM

LRU: PANEL A6A3

CRITICALITY OF THIS

02/27/98

ITEM NAME: CIRCUIT BREAKER

FAILURE MODE: 1R3

FAILURE MODE:

FAILS CLOSED (FAILS TO OPEN MECHANICALLY)

MISSION PHASE:

OO ON-ORBIT

VEHICLE/PAYLOAD/KIT EFFECTIVITY:

103 DISCOVERY

104 ATLANTIS

105 ENDEAVOUR

CAUSE:

A) STRUCTURAL FAILURE, B) CONTAMINATION, C) VIBRATION, D) MECHANICAL SHOCK,

E) PROCESSING ANOMALY

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

CRITICALITY 1R2 DURING INTACT ABORT ONLY (AVIONICS ONLY)? NO

REDUNDANCY SCREEN

A) PASS

B) N/A

C) PASS

PASSIFAIL RATIONALE:

A)

B)

N/A - AT LEAST TWO REMAINING PATHS ARE READILY DETECTABLE IN FLIGHT

C)

CORRECTING ACTION: NONE

CORRECTING ACTION DESCRIPTION:

DESIGN FAULT TOLERANCE: SWITCHES, CIRCUIT BREAKERS, AND RPC'S PROVIDE REDUNDANCY AGAINST THE INADVERTENT ENERGIZING OF HOOKS OPENING CIRCUITS

RESULTING IN LOSS OF HABITABLE VOLUME.

PAGE: 8 PRINT DATE: 04/11/98

FAILURE MODES EFFECTS ANALYSIS (FMEA) — NON-CIL FAILURE MODE NUMBER: M5-6SS-0116-02

- FAILURE EFFECTS -

(A) SUBSYSTEM:

INABILITY TO REMOVE POWER FROM THE ISS DOCKING MECHANISM LOGIC POWER BUSES

(B) INTERFACING SUBSYSTEM(S):

FIRST FAILURE - NO EFFECT

(C) MISSION:

FIRST FAILURE - NO EFFECT

(D) CREW, VEHICLE, AND ELEMENT(S):

FIRST FAILURE - NO EFFECT

(E) FUNCTIONAL CRITICALITY EFFECTS:

POSSIBLE LOSS OF CREW/VEHICLE AFTER TEN FAILURES:

- 1,2) TWO MAIN BUS LOGIC CIRCUIT BREAKERS IN PANEL A6A3 FAIL CLOSED (FAILS TO OPEN - MECHANICALLY).
- 3.4) TWO APDS CONTROL PANEL POWER CIRCUIT BREAKERS FAIL CLOSED.
- 5,6) TWO APDS POWER (A7A2) CIRCUIT BREAKERS FAIL CLOSED.
- ONE OF TWO ASSOCIATED "UNDOCKING" SWITCHES FAILS CLOSED.
- ONE OF TWO ASSOCIATED "POWER ON" SWITCHES FAILS CLOSED.
- ONE OF TWO ASSOCIATED "APDS CIRC PROT OFF" SWITCHES FAILS CLOSED.
- 10) ONE PSU MAIN POWER RPC FAILS ON RESULTING IN ALL HOOKS INADVERTENTLY OPENING. POSSIBLE LOSS OF HABITABLE ENVIRONMENT.

- TIME FRAME -

TIME FROM FAILURE TO CRITICAL EFFECT: DAYS

TIME FROM FAILURE OCCURRENCE TO DETECTION: MINUTES

TIME FROM DETECTION TO COMPLETED CORRECTING ACTION: N/A

IS TIME REQUIRED TO IMPLEMENT CORRECTING ACTION LESS THAN TIME TO EFFECT?

RATIONALE FOR TIME TO CORRECTING ACTION VS TIME TO EFFECT: 1

CREW CAN KEEP OPEN THE ASSOCIATED SWITCHES ("UNDOCKING", "POWER ON", "APDS CIRC PROT OFF") TO PREVENT INADVERTENT OPENING OF HOOKS RESULTING IN POSSIBLE LOSS OF HABITABLE ENVIRONMENT.

PAGE: 7

FAILURE MODES EFFECTS ANALYSIS (FMEA) - NON-CIL FAILURE MODE NUMBER: M5-689-0116-02

HAZARD REPORT NUMBER(S): ORBI 511

HAZARD(S) DESCRIPTION:

LOSS OF HABITABLE ENVIRONMENT IN ODS/CREW MODULE.

- APPROVALS -

SS&PAE

: T. K. KIMURA

DESIGN ENGINEERING

C. J. ARROYO